Peering through the Mist: Systematic Review of What the Chemistry of Contaminants in Electronic Cigarettes Tells Us about Health Risks

Article-Journal 1)

Electronic cigarettes (e-cigarettes) are generally recognized as a safer alternative to combusted tobacco products, but there are conflicting claims about the degree to which these products warrant concern for the health of the vapers (e-cigarette users). This paper reviews available data on chemistry of aerosols and liquids of electronic cigarettes and compares modeled exposure of vapers with occupational safety standards.

Both peer-reviewed and “grey” literature were accessed and more than 9,000 observations of highly variable quality were extracted. Comparisons to the most universally recognized workplace exposure standards, Threshold Limit Values (TLVs), were conducted under “worst case” assumptions about both chemical content of aerosol and liquids as well as behavior of vapers.

There was no evidence of potential for exposures of e-cigarette users to contaminants that are associated with risk to health at a level that would warrant attention if it were an involuntary workplace exposures. The vast majority of predicted exposures are < <1% of TLV. Predicted exposures to acrolein and formaldehyde are typically <5% TLV. Considering exposure to the aerosol as a mixture of contaminants did not indicate that exceeding half of TLV for mixtures was plausible. Only exposures to the declared major ingredients – propylene glycol and glycerin – warrant attention because of precautionary nature of TLVs for exposures to hydrocarbons with no established toxicity.

Current state of knowledge about chemistry of liquids and aerosols associated with electronic cigarettes indicates that there is no evidence that vaping produces inhalable exposures to contaminants of the aerosol that would warrant health concerns by the standards that are used to ensure safety of workplaces. However, the aerosol generated during vaping as a whole (contaminants plus declared ingredients) creates personal exposures that would justify surveillance of health among exposed persons in conjunction with investigation of means to keep any adverse health effects as low as reasonably achievable. Exposures of bystanders are likely to be orders of magnitude less, and thus pose no apparent concern.

. . . .

Key Conclusions:

  • Even when compared to workplace standards for involuntary exposures, and using several conservative (erring on the side of caution) assumptions, the exposures from using e-cigarettes fall well below the threshold for concern for compounds with known toxicity. That is, even ignoring the benefits of e-cigarette use and the fact that the exposure is actively chosen, and even comparing to the levels that are considered unacceptable to people who are not benefiting from the exposure and do not want it, the exposures would not generate concern or call for remedial action.
  • Expressed concerns about nicotine only apply to vapers who do not wish to consume it; a voluntary (indeed, intentional) exposure is very different from a contaminant.
  • There is no serious concern about the contaminants such as volatile organic compounds (formaldehyde, acrolein, etc.) in the liquid or produced by heating. While these contaminants are present, they have been detected at problematic levels only in a few studies that apparently were based on unrealistic levels of heating.
  • The frequently stated concern about contamination of the liquid by a nontrivial quantity of ethylene glycol or diethylene glycol remains based on a single sample of an early technology product (and even this did not rise to the level of health concern) and has not been replicated.
  • Tobacco-specific nitrosamines (TSNA) are present in trace quantities and pose no more (likely much less) threat to health than TSNAs from modern smokeless tobacco products, which cause no measurable risk for cancer.
  • Contamination by metals is shown to be at similarly trivial levels that pose no health risk, and the alarmist claims about such contamination are based on unrealistic assumptions about the molecular form of these elements.
  • The existing literature tends to overestimate the exposures and exaggerate their implications. This is partially due to rhetoric, but also results from technical features. The most important is confusion of the concentration in aerosol, which on its own tells us little about risk to heath, with the relevant and much smaller total exposure to compounds in the aerosol averaged across all air inhaled in the course of a day. There is also clear bias in previous reports in favor of isolated instances of highest level of chemical detected across multiple studies, such that average exposure that can be calculated are higher than true value because they are “missing” all true zeros.
  • Routine monitoring of liquid chemistry is easier and cheaper than assessment of aerosols. Combined with an understanding of how the chemistry of the liquid affects the chemistry of the aerosol and insights into behavior of vapers, this can serve as a useful tool to ensure the safety of e-cigarettes.
  • The only unintentional exposures (i.e., not the nicotine) that seem to rise to the level that they are worth further research are the carrier chemicals themselves, propylene glycol and glycerin. This exposure is not known to cause health problems, but the magnitude of the exposure is novel and thus is at the levels for concern based on the lack of reassuring data.

z-ref: 4rmfh98g

Burstyn, I. (2014) 'Peering through the mist: systematic review of what the chemistry of contaminants in electronic cigarettes tells us about health risks', BMC Public Health, 14: 18. <doi:10.1186/1471-2458-14-18>
research/documents/4rmfh98g.txt · Last modified: 2014/04/02 23:39 by rainman